

International Journal of Current Research in Science and Technology

Weakly g^* -closed Sets

Research Article

O. Ravi^{1*}, I. Rajasekaran¹ and M. Sathyabama²

- 1 Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai District, Tamil Nadu, India.
- 2 Department of Mathematics, Sree Sevugan Annamalai College, Devakottai, Tamil Nadu, India.
- Abstract: Veera kumar [14] introduced the class of g^* -closed sets. We introduce a new class of generalized closed sets called weakly g^* -closed sets which contains the above mentioned class. Also, we investigate the relationships among the related generalized closed sets.

Keywords: g^* -closed set, wg^* -closed set, g^* -continuity, wg^* -continuity, contra g^* -continuity. © JS Publication.

1. Introduction

Veerakumar [14] studied and investigated properties of the notion of g^* -closed sets. In this paper, we introduce a new class of generalized closed sets called weakly g^* -closed sets which contains the above mentioned class. Also, we investigate the relationships among the related generalized closed sets.

2. Preliminaries

Throughout this paper, (X, τ) and (Y, σ) (briefly X and Y) represent non-empty topological spaces. For a subset A of a space X, cl(A), int(A) and C(A) denotes the closure of A, the interior of A and the complement of A respectively. Recall that a subset A of a space X is called nowhere dense if $int(cl(A)) = \emptyset$.

Definition 2.1. Let A be a subset of a space X. Then A is called

- (1). an α -open [9] if $A \subseteq int(cl(int(A)))$.
- (2). an α -closed if C(A) is an α -open.
- (3). semi-open [6] if $A \subseteq cl(int(A))$.
- (4). semi-closed if C(A) is semi-open.
- (5). regular open [11] if A = int(cl(A)).
- (6). regular closed if C(A) is regular open.

^{*} E-mail: siingam@yahoo.com

The α -closure of a subset A of X, denoted by $\alpha cl(A)$, is defined as the intersection of all α -closed sets containing A.

Definition 2.2. Let X and Y be two topological spaces. A function $f: X \to Y$ is called perfectly continuous [1] (resp. R-map [2]) if $f^{-1}(V)$ is clopen (resp. regular open) in X for regular open set V of Y.

Definition 2.3. A subset A of a space X is called π -open [3] if the finite union of regular open sets.

Definition 2.4. A subset A of a topological space X is called

- (1). a weakly g-closed (briefly, wg-closed) set [12] if $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- (2). a weakly πg -closed (briefly, πg -closed) set [10] if $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is π -open in X.
- (3). a regular weakly generalized closed (briefly, rwg-closed) set [8] if $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.

Definition 2.5. A topological space X is said to be almost connected [4] if X cannot be written as a disjoint union of two non-empty regular open sets.

Remark 2.6 ([3]). For a subset of a topological space, we have following implications:

regular open $\Rightarrow \pi$ -open \Rightarrow open

Definition 2.7. Let A be a subset of a space X. Then A is called

- (1). g-closed [5] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X;
- (2). g-closed if C(A) is g-open.
- (3). g^* -closed [14] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in X;
- (4). g^* -closed if C(A) is g^* -open.
- (5). αg -closed [7] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X;
- (6). αg -closed if C(A) is αg -open.

Remark 2.8. In a space X,

- (1). every closed set is g^* -closed but not conversely.[14]
- (2). every closed set is g-closed but not conversely.[5]

3. Weakly g^* -closed Sets

We introduce the definition of weakly g^* -closed sets in topological spaces and study the relationships of such sets.

Definition 3.1. A subset A of a topological space X is called a weakly g^* -closed (briefly, wg^* -closed) set if $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is g-open in X.

Theorem 3.2. Every g^* -closed set is wg^* -closed but not conversely.

Example 3.3. Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a, b\}, X\}$. Then the set $\{a\}$ is wg^* -closed set but not a g^* -closed in X.

Theorem 3.4. Every wg^* -closed set is wg-closed but not conversely.

46

Proof. Let A be any wg^* -closed set and U be any open set containing A. Then U is an g-open set containing A. We have $cl(int(A)) \subseteq U$. Thus, A is wg-closed.

Example 3.5. Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, X\}$. Then the set $\{a, b\}$ is wg-closed but not a wg^{*}-closed.

Theorem 3.6. Every wg^* -closed set is $w\pi g$ -closed but not conversely.

Proof. Let A be any wg^* -closed set and U be any π -open set containing A. Then U is an g-open set containing A. We have $cl(int(A)) \subseteq U$. Thus, A is $w\pi g$ -closed.

Example 3.7. In Example 3.5, the set $\{a, c\}$ is $w\pi g$ -closed set but not a wg^* -closed.

Theorem 3.8. Every wg^* -closed set is rwg-closed but not conversely.

Proof. Let A be any wg^* -closed set and U be any regular open set containing A. Then U is an g-open set containing A. We have $cl(int(A)) \subseteq U$. Thus, A is rwg-closed.

Example 3.9. In Example 3.5, the set $\{a\}$ is rwg-closed set but not a wg^{*}-closed.

Theorem 3.10. If a subset A of a topological space X is both closed and g-closed, then it is wg^* -closed in X.

Proof. Let A be a g-closed set in X and U be any open set containing A. Then $U \supseteq cl(A) \supseteq cl(int(cl(A)))$. Since A is closed, $U \supseteq cl(int(A))$ and U is g-open set containing A. Hence A is wg^* -closed in X.

Theorem 3.11. If a subset A of a topological space X is both open and wg^* -closed, then it is closed.

Proof. Since A is both open and wg^* -closed, $A \supseteq cl(int(A)) = cl(A)$ and hence A is closed in X.

Corollary 3.12. If a subset A of a topological space X is both open and wg^* -closed, then it is both regular open and regular closed in X.

Theorem 3.13. Let X be a topological space and $A \subseteq X$ be open. Then, A is wg^* -closed if and only if A is g^* -closed.

Proof. Let A be g^* -closed. By Theorem 3.2, it is wg^* -closed. Conversely, let A be wg^* -closed. Since A is open, by Theorem 3.11, A is closed. Hence A is g^* -closed.

Theorem 3.14. If a set A of X is wg^* -closed, then cl(int(A)) - A contains no non-empty g-closed set.

Proof. Let F be an g-closed set such that $F \subseteq cl(int(A)) - A$. Since F^c is g-open and $A \subseteq F^c$, from the definition of wg^* -closedness it follows that $cl(int(A)) \subseteq F^c$. i.e., $F \subseteq (cl(int(A)))^c$. This implies that $F \subseteq (cl(int(A))) \cap (cl(int(A)))^c = \phi$.

Theorem 3.15. If a subset A of a topological space X is nowhere dense, then it is wg^* -closed.

Proof. Since $int(A) \subseteq int(cl(A))$ and A is nowhere dense, $int(A) = \phi$. Therefore $cl(int(A)) = \phi$ and hence A is wg^* -closed in X. The converse of Theorem 3.15 need not be true as seen in the following example.

Example 3.16. Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, \{b, c\}, X\}$. Then the set $\{a\}$ is wg^* -closed set but not nowhere dense in X.

Remark 3.17. The following Examples show that wg^* -closedness and semi-closedness are independent.

Example 3.18. In Example 3.3, the set $\{a, c\}$ is wg^* -closed but not semi-closed in X.

Example 3.19. Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Then the set $\{a\}$ is semi-closed but not wg^* -closed in X.

Remark 3.20. From the above discussions and known results, we obtain the following diagram, where $A \rightarrow B$ represents A implies B but not conversely.

Diagram

$closed \Rightarrow wg^{\star}$ - $closed \Rightarrow wg$ - $closed \Rightarrow w\pi g$ - $closed \Rightarrow rwg$ -closed

Definition 3.21. A subset A of a topological space X is called wg^* -open set if C(A) is wg^* -closed in X.

Proposition 3.22. Every g-open set is wg^{*}-open but not conversely.

Theorem 3.23. A subset A of a topological space X is wg^* -open if $G \subseteq int(cl(A))$ whenever $G \subseteq A$ and G is g-closed.

Proof. Let A be any wg^* -open. Then A^c is wg^* -closed. Let G be an g-closed set contained in A. Then G^c is an g-open set containing A^c . Since A^c is wg^* -closed, we have $cl(int(A^c)) \subseteq G^c$. Therefore $G \subseteq int(cl(A))$.

Conversely, we suppose that $G \subseteq int(cl(A))$ whenever $G \subseteq A$ and G is g-closed. Then G^c is an g-open set containing A^c and $G^c \supseteq (int(cl(A)))^c$. It follows that $G^c \supseteq cl(int(A^c))$. Hence A^c is wg^* -closed and so A is wg^* -open.

4. Weakly g^* -continuous Functions

Definition 4.1. Let X and Y be two topological spaces. A function $f: X \to Y$ is called

(1). weakly g^* -continuous (briefly, wg^* -continuous) if $f^{-1}(U)$ is a wg^* -open set in X for each open set U of Y.

(2). g^* -continuous [14] if $f^{-1}(U)$ is a g^* -open set in X for each open set U of Y.

(3). contra g^* -continuous [13] if $f^{-1}(V)$ is g^* -closed set of X for every open set V of Y.

Example 4.2. Let $X = Y = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{a\}, Y\}$. The function $f: X \to Y$ defined by f(a) = b, f(b) = c and f(c) = a is wg^* -continuous, because every open subset of Y is wg^* -closed in X.

Theorem 4.3. Every g^* -continuous function is wg^* -continuous.

Proof. It follows from Theorem 3.2.

The converse of Theorem 4.3 need not be true as seen in the following example.

Example 4.4. Let $X = Y = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{b\}, Y\}$. Let $f : X \to Y$ be the identity function. Then f is wg^* -continuous but not g^* -continuous.

Theorem 4.5. A function $f: X \to Y$ is wg^* -continuous if and only if $f^{-1}(U)$ is a wg^* -closed set in X for each closed set U of Y.

Proof. Let U be any closed set of Y. According to the assumption $f^{-1}(U^c) = X \setminus f^{-1}(U)$ is wg^* -open in X, so $f^{-1}(U)$ is wg^* -closed in X.

The converse can be proved in a similar manner.

Definition 4.6. A topological space X is said to be locally g^* -indiscrete if every g^* -open set of X is closed in X.

Theorem 4.7. Let $f: X \to Y$ be a function. If f is contra g^* -continuous and X is locally g^* -indiscrete, then f is continuous.

Proof. Let V be a closed in Y. Since f is contra g^* -continuous, $f^{-1}(V)$ is g^* -open in X. Since X is locally g^* -indiscrete, $f^{-1}(V)$ is closed in X. Hence f is continuous.

Theorem 4.8. Let $f: X \to Y$ be a function. If f is contra g^* -continuous and X is locally g^* -indiscrete, then f is wg^* -continuous.

Proof. Let $f: X \to Y$ be contra g^* -continuous and X is locally g^* -indiscrete. By Theorem 4.7, f is continuous, then f is wg^* -continuous.

Proposition 4.9. If $f: X \to Y$ is perfectly continuous and wg^* -continuous, then it is R-map.

Proof. Let V be any regular open subset of Y. According to the assumption, $f^{-1}(V)$ is both open and closed in X. Since $f^{-1}(V)$ is closed, it is wg^* -closed. We have $f^{-1}(V)$ is both open and wg^* -closed. Hence, by Corollary 3.12, it is regular open in X, so f is R-map.

Definition 4.10. A topological space X is called g^* -compact if every cover of X by g^* -open sets has a finite subcover.

Definition 4.11. A topological space X is weakly g^* -compact (briefly, wg^* -compact) if every wg^* -open cover of X has a finite subcover.

Remark 4.12. Every wg^* -compact space is g^* -compact.

Theorem 4.13. Let $f: X \to Y$ be surjective wg^* -continuous function. If X is wg^* -compact, then Y is compact.

Proof. Let $\{A_i : i \in I\}$ be an open cover of Y. Then $\{f^{-1}(A_i) : i \in I\}$ is a wg^* -open cover in X. Since X is wg^* -compact, it has a finite subcover, say $\{f^{-1}(A_1), f^{-1}(A_2), \dots, f^{-1}(A_n)\}$. Since f is surjective $\{A_1, A_2, \dots, A_n\}$ is a finite subcover of Y and hence Y is compact.

Definition 4.14. A topological space X is called

(1). weakly g^* -connected (briefly, wg^* -connected) if X cannot be written as the disjoint union of two non-empty wg^* -open sets.

Theorem 4.15. If a topological space X is wg^* -connected, then X is almost connected (resp. g^* -connected).

Proof. It follows from the fact that each regular open set (resp. g^* -open set) is wg^* -open.

Theorem 4.16. For a topological space X, the following statements are equivalent:

- (1). X is wg^* -connected.
- (2). The empty set ϕ and X are only subsets which are both wg^* -open and wg^* -closed.
- (3). Each wg*-continuous function from X into a discrete space Y which has at least two points is a constant function.

^{(2).} g^* -connected [13] if X cannot be written as the disjoint union of two non-empty g^* -open sets.

Proof. (1) \Rightarrow (2). Let $S \subseteq X$ be any proper subset, which is both wg^* -open and wg^* -closed. Its complement $X \setminus S$ is also wg^* -open and wg^* -closed. Then $X = S \cup (X \setminus S)$ is a disjoint union of two non-empty wg^* -open sets which is a contradiction with the fact that X is wg^* -connected. Hence, $S = \phi$ or X.

(2) \Rightarrow (1). Let X = A \cup B where A \cap B = ϕ , A $\neq \phi$, B $\neq \phi$ and A, B are wg^{*}-open. Since A = X \ B, A is wg^{*}-closed. According to the assumption A = ϕ , which is a contradiction.

(2) \Rightarrow (3). Let $f: X \to Y$ be a wg^* -continuous function where Y is a discrete space with at least two points. Then $f^{-1}(\{y\})$ is wg^* -closed and wg^* -open for each $y \in Y$ and $X = \bigcup \{ f^{-1}(\{y\}) : y \in Y \}$. According to the assumption, $f^{-1}(\{y\}) = \phi$ or $f^{-1}(\{y\}) = X$. If $f^{-1}(\{y\}) = \phi$ for all $y \in Y$, f will not be a function. Also there is no exist more than one $y \in Y$ such that $f^{-1}(\{y\}) = X$. Hence, there exists only one $y \in Y$ such that $f^{-1}(\{y\}) = X$ and $f^{-1}(\{y_1\}) = \phi$ where $y \neq y_1 \in Y$. This shows that f is a constant function.

(3) \Rightarrow (2). Let $S \neq \phi$ be both wg^* -open and wg^* -closed in X. Let $f : X \rightarrow Y$ be a wg^* -continuous function defined by $f(S) = \{a\}$ and $f(X \setminus S) = \{b\}$ where $a \neq b$. Since f is constant function we get S = X.

Theorem 4.17. Let $f: X \to Y$ be a wg^* -continuous surjective function. If X is wg^* -connected, then Y is connected.

Proof. We suppose that Y is not connected. Then $Y = A \cup B$ where $A \cap B = \phi$, $A \neq \phi$, $B \neq \phi$ and A, B are open sets in Y. Since f is wg^* -continuous surjective function, $X = f^{-1}(A) \cup f^{-1}(B)$ are disjoint union of two non-empty wg^* -open subsets. This is contradiction with the fact that X is wg^* -connected.

5. Weakly g^* -open and Weakly g^* -closed Functions

Definition 5.1. Let X and Y be topological spaces. A function $f: X \to Y$ is called

(1). weakly g^* -open (briefly, wg^* -open) if f(V) is a wg^* -open set in Y for each open set V of X.

(2). g^* -open [13] if f(V) is a g^* -open set in Y for each open set V of X.

Remark 5.2. Every g^* -open function is wg^* -open but not conversely.

Example 5.3. Let $X = Y = \{a, b, c, d\}$ with $\tau = \{\phi, \{a\}, \{a, b, d\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b, c\}, \{a, b, c\}, Y\}$. Let $f : X \to Y$ be the identity function. Then f is wg^* -open but not g^* -open.

Definition 5.4. Let X and Y be topological spaces. A function $f: X \to Y$ is called weakly g^* -closed (briefly, wg^* -closed) if f(V) is a wg^* -closed set in Y for each closed set V of X. It is clear that an open function is wg^* -open and a closed function is wg^* -closed.

Theorem 5.5. Let X and Y be topological spaces. A function $f: X \to Y$ is wg^* -closed if and only if for each subset B of Y and for each open set G containing $f^{-1}(B)$ there exists a wg^* -open set F of Y such that $B \subseteq F$ and $f^{-1}(F) \subseteq G$.

Proof. Let B be any subset of Y and let G be an open subset of X such that $f^{-1}(B) \subseteq G$. Then $F = Y \setminus f(X \setminus G)$ is wg^* -open set containing B and $f^{-1}(F) \subseteq G$.

Conversely, let U be any closed subset of X. Then $f^{-1}(Y \setminus f(U)) \subseteq X \setminus U$ and $X \setminus U$ is open. According to the assumption, there exists a wg^* -open set F of Y such that $Y \setminus f(U) \subseteq F$ and $f^{-1}(F) \subseteq X \setminus U$. Then $U \subseteq X \setminus f^{-1}(F)$. From $Y \setminus F \subseteq f(U) \subseteq f(X \setminus f^{-1}(F)) \subseteq Y \setminus F$ it follows that $f(U) = Y \setminus F$, so f(U) is wg^* -closed in Y. Therefore f is a wg^* -closed function. \Box

Remark 5.6. The composition of two wg^* -closed functions need not be a wg^* -closed as it can be seen from the following *Example.*

Example 5.7. Let $X = Y = Z = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, \{a, b\}, X\}, \sigma = \{\phi, \{a\}, \{b, c\}, Y\}$ and $\eta = \{\phi, \{a, b\}, Z\}$. We define $f: X \to Y$ by f(a) = c, f(b) = b and f(c) = a and let $g: Y \to Z$ be the identity function. Hence both f and g are wg^* -closed functions. For a closed set $U = \{b, c\}$ in X, $(g \circ f)(U) = g(f(U)) = g(\{a, b\}) = \{a, b\}$ which is not wg^* -closed in Z. Hence the composition of two wg^* -closed functions need not be a wg^* -closed.

Theorem 5.8. Let X, Y and Z be topological spaces. If $f: X \to Y$ is a closed function and $g: Y \to Z$ is a wg^* -closed function, then $g \circ f: X \to Z$ is a wg^* -closed function.

Definition 5.9. A function $f: X \to Y$ is called

- (1). a weakly g^* -irresolute (briefly, wg^* -irresolute) if $f^{-1}(U)$ is a wg^* -open set in X for each wg^* -open set U of Y.
- (2). g^* -irresolute [14] if $f^{-1}(U)$ is a g^* -open set in X for each g^* -open set U of Y.
- (3). an αg -irresolute [7] if $f^{-1}(U)$ is an αg -open set in X for each αg -open set U of Y.

Example 5.10. Let $X = Y = \{a, b, c\}$ with $\tau = \{\phi, \{b\}, \{a, c\}, X\}$ and $\sigma = \{\phi, \{b\}, Y\}$. Let $f : X \to Y$ be the identity function. Then f is wg^* -irresolute.

Remark 5.11. The following Examples show that αg -irresoluteness and wg^* -irresoluteness are independent of each other.

Example 5.12. Let $X = Y = \{a, b, c\}$ with $\tau = \{\phi, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a\}, Y\}$. Let $f : X \to Y$ be the identity function. Then f is wg^* -irresolute but not αg -irresolute.

Example 5.13. Let $X = Y = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a, b\}, Y\}$. Let $f: X \to Y$ be the identity function. Then f is αg -irresolute but not wg^* -irresolute.

Remark 5.14. Every g^* -irresolute function is wg^* -continuous but not conversely. Also, the concepts of g^* -irresoluteness and wg^* -irresoluteness are independent of each other.

Example 5.15. Let $X = Y = \{a, b, c, d\}$ with $\tau = \{\phi, \{a\}, \{b, c\}, \{a, b, c\}, X\}$ and $\sigma = \{\phi, \{a\}, \{a, b, d\}, Y\}$. Let $f: X \to Y$ be the identity function. Then f is wg^* -continuous but not g^* -irresolute.

Example 5.16. Let $X = Y = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{a\}, \{a, b\}, Y\}$. Let $f : X \to Y$ be the identity function. Then f is wg^* -irresolute but not g^* -irresolute.

Example 5.17. In Example 5.13, f is g^* -irresolute but not wg^* -irresolute.

Theorem 5.18. The composition of two wg^{*}-irresolute functions is also wg^{*}-irresolute.

Theorem 5.19. Let $f: X \to Y$ and $g: Y \to Z$ be functions such that $g \circ f: X \to Z$ is wg^* -closed function. Then the following statements hold:

- (1). if f is continuous and injective, then g is wg^* -closed.
- (2). if g is wg^* -irresolute and surjective, then f is wg^* -closed.

Proof.

- (1). Let F be a closed set of Y. Since $f^{-1}(F)$ is closed in X, we can conclude that $(g \circ f)(f^{-1}(F))$ is wg^* -closed in Z. Hence g(F) is wg^* -closed in Z. Thus g is a wg^* -closed function.
- (2). It can be proved in a similar manner as (1).

Theorem 5.20. If $f: X \to Y$ is an wg^* -irresolute function, then it is wg^* -continuous.

Remark 5.21. The converse of the above Theorem need not be true in general. The function $f: X \to Y$ in the Example 5.13 is wg^* -continuous but not wg^* -irresolute.

Theorem 5.22. If $f: X \to Y$ is surjective wg^* -irresolute function and X is wg^* -compact, then Y is wg^* -compact.

Theorem 5.23. If $f: X \to Y$ is surjective wg^* -irresolute function and X is wg^* -connected, then Y is wg^* -connected.

References

- [1] S.P.Arya and R.Gupta, On strongly continuous mappings, Kyungpook Math. J., 14(1974), 131-143.
- [2] D.Carnation, Some properties related to compactness in topological spaces, Ph.D. Thesis, University of Arkansas, (1977).
- [3] J.Dontchev and T.Noiri, Quasi-normal spaces and πg -closed sets, Acta Math. Hungar., 89(2000), 211-219.
- [4] E.Ekici, Generalization of perfectly continuous, regular set-connected and clopen functions, Acta Math. Hungar., 107(3)(2005), 193-206.
- [5] N.Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2)(1970), 89-96.
- [6] N.Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [7] H.Maki, R.Devi and K.Balachandran, Associated topologies of generalized α-closed sets and α-generalized closed sets, Mem. Fac. Sci. Kochi. Univ. Ser. A. Math., 15(1994), 51-63.
- [8] N.Nagaveni, Studies on generalizations of homeomorphisms in topological spaces, Ph.D. Thesis, Bharathiar University, Coimbatore, (1999).
- [9] O.Njastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- [10] O.Ravi, S.Ganesan and S.Chandrasekar, On weakly πg -closed sets in topological spaces, Italian Journal of Pure and Applied Mathematics (To appear).
- [11] M.H.Stone, Applications of the theory of Boolean rings to general topology, Trans Amer. Math. Soc., 41(1937), 374-481.
- [12] P.Sundaram and N.Nagaveni, On weakly generalized continuous maps, weakly generalized closed maps and weakly generalized irresolute maps in topological spaces, Far East J. Math. Sci., 6(6)(1998), 903-912.
- [13] G.Thanavalli, Further study of bitopological sets, functions and spaces, Madurai Kamaraj University, Ph. D Thesis (2015).
- [14] M.K.R.S.Veera Kumar, Between closed sets and g-closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 21(2000), 1-19.