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1. Introduction

The theory of generalized topology was studied by A. Csàszàr [2] in 1997. In his papers properties of generalized topology,

basic operators, generalized neighborhood system, some constructions for generalized topologies etc have been introduced

and studied. It is well known that generalized topology in the sense of Csàszàr [2] is a generalization of topology on set. The

aim of this paper is to introduce µ-α?-sets and obtain some decompositions. Recall some generalized topological concepts

which are very useful in the sequel.

Let X be a non-empty set and µ be a collection of subsets of X. Then µ is called generalized topology [2] (briefly GT) on

X if φ ∈ µ and Gi ∈ µ for i ∈ I 6= φ implies G =
⋃
i∈I

Gi ∈ µ. We say µ is strong [4] if X ∈ µ and we call the pair (X, µ) a

generalized topological space (briefly GTS). The elements of µ are called µ-open sets and the complements of µ-open sets

are called µ-closed sets [2]. For A ⊆ X, we denote by cµ(A) the intersection of all µ-closed sets containing A and by iµ(A)

the union of all µ-open sets contained in A [5].

Remark 1.1 ([14]). In a GTS (X, µ) the followings hold:

1. iµ(A ∩B) ⊆ iµ(A) ∩ iµ(B);

2. cµ(A ∪B) ⊇ cµ(A) ∪ cµ(B).

Definition 1.2. Let (X, µ) be a GTS and A ⊆ X. Then A is said to be

1. µ-semi-open [5] if A ⊆ cµ(iµ(A)).
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2. µ-preopen [5] if A ⊆ iµ(cµ(A)).

3. µ-α-open [5] if A ⊆ iµ(cµ(iµ(A))).

4. µ-β-open [5] if A ⊆ cµ(iµ(cµ(A))).

5. µr-open [8] if A = iµ(cµ(A)).

The complement of a µ-semi-open (resp. µ-preopen, µ-α-open, µ-β-open, µr-open) set is called µ-semi-closed (resp. µ-

preclosed, µ-α-closed, µ-β-closed, µr-closed) set. We denote by σ(µ) (resp. π(µ), α(µ), β(µ)) the classes of all µ-semi-open

sets (resp. µ-preopen sets, µ-α-open sets, µ-β-open sets). Obviously, in [5], µ ⊆ α(µ) ⊆ σ(µ) ⊆ β(µ) and α(µ) ⊆ π(µ) ⊆

β(µ). Clearly every µr-open set is µ-open but not conversely.

Definition 1.3 ([12]). Let (X, µ) be a GTS and A ⊆ X. We denote by cα(A) the intersection of all µ-α-closed sets containing

A and by iα(A) the union of all µ-α-open sets contained in A.

Lemma 1.4 ([5]). Let (X, µ) be a GTS and A, B ⊆ X, then the followings hold.

1. iµ(A) ⊆ A ⊆ cµ(A);

2. A ⊆ B implies iµ(A) ⊆ iµ(B) and cµ(A) ⊆ cµ(B);

3. iµ(iµ(A)) = iµ(A) and cµ(cµ(A)) = cµ(A);

4. iµ(X −A) = X − cµ(A) and cµ(X −A) = X − iµ(A);

5. A ∈ µ iff A = iµ(A) and A is µ-closed iff A = cµ(A).

Definition 1.5 ([10]). Let (X, µ) be a GTS and A ⊂ X. Then A is said to be µ-nowhere dense if iµ(cµ(A)) = φ.

Definition 1.6 ([6]). In a GTS (X, µ), if µ is closed under finite intersections, then (X, µ) is called a quasi-topological

space.

Definition 1.7 ([11]). Let (X, µ) be a quasi-topological space. For A and B of X the followings hold.

1. iµ(A ∩ B) = iµ(A) ∩ iµ(B).

2. cµ(A ∪ B) = cµ(A) ∪ cµ(B).

Lemma 1.8 ([7]). Let (X, µ) be a quasi-topological space. If A ⊂ X and U ∈ µ then U ∩ cµ(A) ⊂ cµ(U ∩ A).

2. µ-α?-sets

Definition 2.1. A subset A of a GTS (X, µ) is said to be a µ-α?-set if iµ(A) = iµ(cµ(iµ(A))). We will denote the family

of all µ-α?-sets in a GTS (X, µ) by µα?(X).

Remark 2.2. The following two Examples show that µ-α?-sets and µ-α-open sets are independent.

Example 2.3. Let X = R be the set of real numbers and µ = {φ, {1, 2}, {2, 3}, {1, 2, 3}}. Let A ⊆ X and A 6= φ be such

that A ∩ {1, 2, 3} = φ. Then iµ(A) = φ and iµ(cµ(iµ(A))) = φ. Then A is a µ-α?-set but not µ-α-open.

Example 2.4. Let X = {a, b, c, d} and µ = {φ, {a, b}, {b, c}, {a, b, c}}. Let A = {a, b}. Then iµ(cµ(iµ(A))) = {a, b,

c} ⊇ A and so A is µ-α-open but it is not a µ-α?-set.
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Theorem 2.5. Let (X, µ) be a GTS and A ⊆ X. Then the following are equivalent.

1. A is a µ-α?-set;

2. X − A is µ-β-open;

3. iµ(A) is µr-open.

Proof. (1) ⇒ (2): Suppose A is a µ-α?-set. Claim X − A is µ-β-open. Now cµ(iµ(cµ(X − A))) = X −iµ(cµ(iµ(A)))) =

X − iµ(A) = cµ(X −A) ⊇ X −A. So X −A is µ-β-open.

(2) ⇒ (3): Suppose X − A is a µ-β-open set. Claim iµ(A) is µr-open. Since X − A ∈ β(µ), X − A ⊆ cµ(iµ(cµ(X − A)))

= X − iµ(cµ(iµ(A))) which implies that iµ(cµ(iµ(A))) ⊆ A and iµ(cµ(iµ(A))) ⊆ iµ(A). But always iµ(A) ⊆ iµ(cµ(iµ(A)))

and so iµ(A) = iµ(cµ(iµ(A))). Then iµ(A) is µr-open.

(3) ⇒ (1): is clear.

Theorem 2.6. Let (X, µ) be a GTS and A ⊆ X, then A is µ-α?-set and µ-α-open set if and only if it is µr-open.

Proof. Suppose A ⊆ X is both µ-α?-set and µ-α-open. Then iµ(A) = iµ(cµ(iµ(A))) and A ⊆ iµ(cµ(iµ(A))). We have A

⊆ iµ(A) and so iµ(A) = A. By Theorem 2.5, A is µr-open.

Conversely, suppose A is µr-open. Hence A is µ-open and hence µ-α-open. Also A = iµ(cµ(A)) implies that iµ(A) =

iµ(cµ(iµ(A))). Hence A is a µ-α?-set.

Theorem 2.7. Let (X, µ) be a GTS and A ⊆ X is a µ-semi-closed set, then A is µ-α?-set.

Proof. Let A be a µ-semi-closed set of X. Since iµ(A) ⊆ A, cµ(iµ(A)) ⊆ cµ(A) and iµ(cµ(iµ(A))) ⊆ iµ(cµ(A)) ⊆ A implies

iµ(cµ(iµ(A))) ⊆ iµ(A). Always iµ(A) ⊆ iµ(cµ(iµ(A))). Hence A is µ-α?-set.

Remark 2.8. The converse of the above Theorem need not be true.

Example 2.9. Let X = {a, b, c, d} and µ ={φ, {a}, {a, b}, {b, c}, {a, b, c}}. Let A = {a, c} then iµ(cµ(A)) = {a, b, c}.

Since iµ(cµ(A)) ⊆ A, A is not µ-semi-closed. But iµ(cµ(iµ(A))) = {a} = iµ(A) and so A is a µ-α?-set.

Theorem 2.10. Let (X, µ) be a GTS and A ⊆ X. Then the following are equivalent.

1. A is µ-semi-closed and µ-α-open.

2. A is µ-α?-set and µ-α-open.

3. X − A is µ-β-open and A is µ-α-open.

4. A is µr-open.

5. A is µ-semi-closed and µ-preopen.

Proof. (1) ⇒ (2) follows from Theorem 2.7.

(2) ⇒ (3) follows from Theorem 2.5.

(2) ⇔ (4) follows from Theorem 2.6.

(4) ⇒ (1) and (4) ⇔ (5) are clear.

Remark 2.11. The union of two µ-α?-sets need not be a µ-α?-set.
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Example 2.12. In Example 2.9, if A = {a} and B ={b}, then A and B are µ-α?-sets but their union A ∪ B = {a, b} is

not a µ-α?-set.

Definition 2.13. A subset A of a GTS (X, µ) is said to be a Cµ-set (resp. Bµ-set) if there exists U ∈ µ and D ∈ µα?(X)

(resp. D is µ-semi-closed) such that A = U ∩ D.

The family of all Cµ-sets (resp. Bµ-sets) in (X, µ) is denoted by Cµ(X) (resp. Bµ(X)).

Theorem 2.14. Let (X, µ) be a GTS and A ⊆ X. Then the following hold.

1. Bµ(X) ⊆ Cµ(X).

2. µ ⊆ Bµ(X).

3. If X ∈ µ then µα?(X) ⊆ Cµ(X).

4. If X ∈ µ and A ⊆ X is µ-semi-closed then A ∈ Bµ(X).

Proof. (1) The proof follows from Theorem 2.7.

(2) Consider A ∈ µ. Then A = A ∩ X where A ∈ µ and X is µ-semi-closed. Clearly µ-open set is Bµ-set.

The proof of (3) and (4) are clear.

Remark 2.15. In Theorem 2.14, the separate converses of (1) and (2) are not true as shown by the following Example.

Example 2.16. Consider the GTS in Example 2.4.

1. It is clear that Cµ(X) = {φ, {a}, {b}, {c}, {a, b}, {b, c}, {a, b, c}} and Bµ(X) = {φ, {a}, {c}, {a, b}, {b, c}, {a, b,

c}}. Thus {b} ∈ Cµ(X) but {b} 6∈ Bµ(X).

2. Clearly {a} ∈ Bµ(X) but {a} 6∈ µ.

Remark 2.17. In Theorem 2.14(3) and 2.14(4), the condition X ∈ µ cannot be dropped as shown by the following Example.

Example 2.18. Let X = {a, b, c, d}. If we take µ not containing X where µ = {φ, {a, c}, {b, c}, {a, b, c}}. Then

1. µα?-sets are φ, {a}, {b}, {c}, {d}, {a, b}, {a, d}, {b, d},{c, d}, {a, b, c}, {a, b, d}, X and Cµ-sets are φ, {a}, {b},

{c}, {a, b}, {b, c}, {a, b, c}. We obtain that µα?(X) * Cµ(X).

2. µ-semi-closed sets are φ, {a}, {b}, {d}, {a, d}, {b, d}, X and Bµ-sets are φ, {a}, {b}, {a, c}, {b, c}, {a, b, c}. We

obtain that {a, d} is µ-semi-closed but not Bµ-set.

Theorem 2.19. Let (X, µ) be a GTS and A ⊆ X. Then the followings hold.

1. If A ∈ µ, then A is both µ-α-open and Cµ-set.

2. If (X, µ) is a quasi-topological space, then the converse of (1) holds.

Proof. (1) If A ∈ µ, then clearly A is µ-α-open and by Theorem 2.14(2), A ∈ Bµ(X) which implies that A ∈ Cµ(X).

(2) Suppose A is µ-α-open set and a Cµ-set. Then A ⊆ iµ(cµ(iµ(A))) and there exists U ∈ µ and D is a µ-α?-set such that

A = U ∩ D. Then A ⊆ iµ(cµ(iµ(A))) ⊆ iµ(cµ(iµ(U ∩D)) ⊆ iµ(cµ(iµ(D))) = iµ(D). Therefore A = U ∩ A ⊆ U ∩ iµ(D) ⊆

U ∩ D = A which implies that A = U ∩ iµ(D). We know that iµ(D) is µ-open for any subset D ⊆ X. Since µ is a quasi

topology, U ∩ iµ(D) = A ∈ µ.
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Remark 2.20. In the Theorem 2.19(2) the condition of quasi topological space (X, µ) cannot be dropped as shown by the

following Example.

Example 2.21. Let X = {a, b, c, d, e} and µ = {φ, {a}, {d}, {a, d}, {a, b, c}, {a, b, d}, {a, b, c, d}}. It is clear that

α(µ) = {φ, {a}, {d}, {a, b}, {a, c} {a, d}, {a, b, c}, {a, b, d}, {a, c, d}, {a, b, c, d}}. Also Cµ(X) = {φ, {a}, {b},{c},

{d}, {a, b}, {a, c} {a, d}, {b, c}, {b, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d} {a, b, c, d}}. It is observe that {a, b} is

both µ-α-open and Cµ-set but {a, b} 6∈ µ.

Remark 2.22. In a GTS (X, µ), the following hold: cµ(A ∩B) ⊆ cµ(A) ∩ cµ(B).

Theorem 2.23. Let (X, µ) be a quasi topological space and A ⊆ X. Then A is µ-α-open if and only if A = U − B where

U ∈ µ and B is µ-nowhere dense.

Proof. Suppose A is µ-α-open. Then A ⊆ iµ(cµ(iµ(A))) = B, say. Claim A can be expressed as difference of µ-open sets

and µ-nowhere dense sets. Now (iµ(cµ(B − A)) = iµ(cµ(B ∩ (X − A))) ⊆ (iµ(cµ(B))) ∩ iµ(cµ(X − A)) = iµ(cµ(iµ(A))) ∩

(X − cµ(iµ(A)) ⊆ iµ(cµ(iµ(A))) ∩ (X − iµ(cµ(iµ(A))) = φ and so B − A is µ-nowhere dense. Since µ is a GT, B ∈ µ.

Therefore A = B − (B −A) where B ∈ µ and B −A is µ-nowhere dense.

Conversely, suppose A = U − B where U ∈ µ and B is µ-nowhere dense. Claim A is µ-α-open. Now iµ(cµ(iµ(A))) =

iµ(cµ(iµ(U − B))) = iµ(cµ(iµ(U ∩ X − B))) = iµ(cµ(U ∩ iµ(X − B))) ⊇ iµ(U ∩ cµ(iµ(X − B))), by Lemma 1.8 and so

iµ(cµ(iµ(A))) ⊇ iµ(U ∩ (X − iµ(cµ(B)))) = iµ(U ∩X) = iµ(U) = U ⊇ U −B = A. Therefore A is µ-α-open.
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