

International Journal of Current Research in Science and Technology

Computation of Some Minus Indices of Titania Nanotubes

V. R. Kulli^{1,*}

1 Department of Mathematics, Gulbarga University, Gulbarga, Karnataka, India.

Abstract: A titania nanotube is studied in material science. In this paper, we introduce the modified minus index, minus connectivity index, reciprocal minus connectivity index and general minus index of a graph. We compute these minus topological indices for titania nanotubes.

MSC: 05C05, 05C07, 05C12, 05C90.

Keywords: Modified minus index, minus connectivity index, reciprocal minus connectivity index, general minus index, titania nanotube.

© JS Publication.

1. Introduction

We consider only finite, connected simple graph G with vertex set V(G) and edge set E(G). The degree $d_G(v)$ of a vertex vis the number vertices adjacent to v. We refer to [1] for undefined term and notation. Chemical Graph Theory is a branch of Mathematical Chemistry which has an important effect on the development of Chemical Sciences. Several topological indices have been considered in Theoretical Chemistry, see [2]. In [3], Albertson introduced the irregularity index as

$$Alb(G) = \sum_{uv \in E(G)} |d_G(u) - d_G(v)|$$
(1)

Motivated by the definition of the irregularity index, (now we call as minus index denoted by $M_i(G)$), we introduce the modified minus index, minus connectivity index, reciprocal minus connectivity index and general minus index of a graph as follows. The modified minus index of a graph G is defined as

$${}^{m}M_{i}(G) = \sum_{uv \in E(G)} \frac{1}{|d_{G}(u) - d_{G}(v)|}$$
(2)

The minus connectivity index of a graph G is defined as

$$Mic(G) = \sum_{uv \in E(G)} \frac{1}{\sqrt{|d_G(u) - d_G(v)|}}$$
(3)

The reciprocal minus, index of a graph G is defined as

$$RMic(G) = \sum_{uv \in E(G)} \sqrt{|d_G(u) - d_G(v)|}$$

$$\tag{4}$$

^{*} E-mail: vrkulli@gmail.com

The general minus index of a graph G is defined as

$$M_i^a(G) = \sum_{uv \in E(G)} \left[|d_G(u) - d_G(v)| \right]^a$$
(5)

where a is a real number. Recently, some new topological indices were studied, for example, in [4–20]. A study of titania nanotubes has received much attention in Mathematical and Chemical literature (see [21–23]). In this paper, we compute the minus index, modified minus index, minus connectivity index, reciprocal minus connectivity index and general minus index for titania nanotuabes.

2. Titania Nanotubes

Titania is studied in material science. The titania nanotubes denoted by $TiO_2[m, n]$ for any $m, n \in N$, in which m is the number of octagons C_8 in a column. The graph of $TiO_2[m, n]$ is presented in Figure 1.

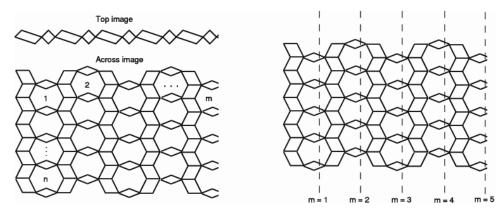


Figure 1: The graph of $TiO_2[m, n]$ nanotube

Let G be the graph of titania nanotube $TiO_2[m, n]$ with 6n(m + 1) vertices and 10mn + 8n edges. In G, by calculation, there are four types of edges based on the degree of end vertices of each edge as given in Table 1.

$d_G(u), d_G(v) \setminus uv \in E(G)$	(2,4)	(2, 5)	(3, 4)	(3, 5)
Number of edges	6n	4mn + 2n	2n	6mn - 2n

Table 1: Edge partition of $TiO_2[m, n]$

In the following theorem, we compute the minus index of titania nanotubes $TiO_2[m, n]$.

Theorem 2.1. The minus index of $TiO_2[m, n]$ nanotubes is $M_i(TiO_2) = 24mn + 16n$.

Proof. Let $G = TiO_2[m, n]$ be the graph of titania nanotube. By using equation (1) and Table 1, we have

$$M_i(TiO_2) = \sum_{uv \in E(G)} |d_G(u) - d_G(v)|$$

= $|2 - 4|6n + |2 - 5|(4mn + 2n) + |3 - 4|2n + |3 - 5|(6mn - 2n)|$
= $24mn + 16n$.

In the following theorem, we compute the modified minus index of titania nanotubes $TiO_2[m, n]$.

Theorem 2.2. The modified minus index of $TiO_2[m, n]$ nanotubes is

$${}^{m}M_i(TiO_2) = \frac{13}{3}mn + \frac{14}{3}n.$$

Proof. Let $G = TiO_2[m, n]$ be the graph of titania nanotube. By using equation (1) and Table 1, we obtain

$${}^{m}M_{i}(TiO_{2}) = \sum_{uv \in E(G)} \frac{1}{|d_{G}(u) - d_{G}(v)|}$$

= $\left(\frac{1}{|2 - 4|}\right) 6n + \left(\frac{1}{|2 - 5|}\right) (4mn + 2n) + \left(\frac{1}{|3 - 4|}\right) 2n + \left(\frac{1}{|3 - 5|}\right) (6mn - 2n)$
= $\frac{13}{3}mn + \frac{14}{3}n.$

In the following theorem, we determine the minus connectivity index of titania nanotubes $TiO_2[m, n]$.

Theorem 2.3. The minus connectivity index of $TiO_2[m, n]$ nanotubes is

$$Mic(G) = \left(\frac{4}{\sqrt{3}} + \frac{6}{\sqrt{2}}\right)mn + \left(\frac{4}{\sqrt{2}} + \frac{2}{\sqrt{3}} + 2\right)n.$$

Proof. Let $G = TiO_2[m, n]$ be the graph of titania nanotube. By using equation (3) and Table 1, we deduce

$$Mic(TiO_2) = \sum_{uv \in E(G)} \frac{1}{\sqrt{|d_G(u) - d_G(v)|}} \\ = \left(\frac{1}{\sqrt{|2 - 4|}}\right) 6n + \left(\frac{1}{\sqrt{|2 - 5|}}\right) (4mn + 2n) + \left(\frac{1}{\sqrt{|3 - 4|}}\right) 2n + \left(\frac{1}{\sqrt{|3 - 5|}}\right) (6mn - 2n) \\ = \left(\frac{4}{\sqrt{3}} + \frac{6}{\sqrt{2}}\right) mn + \left(\frac{4}{\sqrt{2}} + \frac{2}{\sqrt{3}} + 2\right) n.$$

In the following theorem, we determine the reciprocal minus connectivity index of titania nanotubes $TiO_2[m, n]$.

Theorem 2.4. The reciprocal minus connectivity index of $TiO_2[m, n]$ nanotubes is

$$RMic(TiO_2) = \left(4\sqrt{3} + 6\sqrt{2}\right)mn + \left(4\sqrt{2} + \sqrt{3} + 2\right)n.$$

Proof. Let $G = TiO_2[m, n]$ be the graph of titania nanotube. By using equation (4) and Table 1, we deduce

$$RMic(TiO_2) = \sum_{uv \in E(G)} \sqrt{|d_G(u) - d_G(v)|}$$

= $\sqrt{|2 - 4|}6n + \sqrt{|2 - 5|}(4mn + 2n) + \sqrt{|3 - 4|}2n + \sqrt{|3 - 5|}(6mn - 2n)$
= $(4\sqrt{3} + 6\sqrt{2})mn + (4\sqrt{2} + \sqrt{3} + 2)n.$

In the following theorem, we complete the general minus index of titania nanotubes $TiO_2[m, n]$.

Theorem 2.5. The general minus index of $TiO_2[m, n]$ nanotubes is

$$M_i^a(TiO_2) = (4 \times 3^a + 6 \times 2^a) mn + (4 \times 2^a + 2 \times 3^a + 2) n.$$

11

Proof. Let $G = TiO_2[m, n]$ be the graph of titania nanotube. By using equation (5) and Table 1, we obtain

$$M_i^a(TiO_2) = \sum_{uv \in E(G)} \left[|d_G(u) - d_G(v)| \right]^a$$

= $(|2 - 4|)^a 6n + (|2 - 5|)^a (4mn + 2n) + (|3 - 4|)^a 2n + (|3 - 5|)^a (6mn - 2n)$
= $(4 \times 3^a + 6 \times 2^a) mn + (4 \times 2^a + 2 \times 3^a + 2) n.$

References

- [1] V.R.Kulli, College Graph Theory, Vishwa International Publications, Gulbarga, India, (2012).
- [2] R.Todeschini and V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley-VCH, Weinheim, (2009).
- [3] M.O.Albertson, The irregularity of a graph, Ars. Combin., 46(1997), 219-225.
- [4] B.Furtula and I.Gutman, A forgotten topological index, J. Math. Chem., 53(2015), 1184-1190.
- [5] B.Furtula, I.Gutman and S.Ediz, On difference of Zagreb indices, Discrete Appl. Math., 178(2014), 83-88.
- [6] V.R.Kulli, On K indices of graphs, Int. J. Fuzzy Mathematical Archive, 10(2)(2016), 105-109.
- [7] V.R.Kulli, Two new arithmetic-geometric ve-degree indices, Annals of Pure and Applied Mathematics, 17(1)(2018), 107-112.
- [8] V.R.Kulli, K-edge index of some nanostructures, Journal of Computer and Mathematical Sciences, 7(7)(2016), 373-378.
- [9] V.R.Kulli, On K Banhatti indices and K hyper-Banhatti indices of V-Phenylenic nanotubes and nanotorus, Journal of Computer and Mathematical Sciences, 7(6)(2016), 302-307.
- [10] V. R.Kulli, General topological indices of circumcoronene series of benzenoid, International Research Journal of Pure Algebra, 7(5)(2017), 748-753.
- [11] V.R.Kulli, Computing Banhatti indices of networks, International Journal of Advances in Mathematics, 2018(1)(2018), 31-40.
- [12] V.R.Kulli, Some new fifth multiplicative Zagreb indices of PAMAM dendrimers, Journal of Global Research in Mathematics, 5(2)(2018), 82-86.
- [13] V.R.Kulli, Multiplicative connectivity Banhatti indices of dendrimer nanostars, Journal of Chemistry and Chemical Sciences, 8(6)(2018), 964-973.
- [14] V.R.Kulli, Connectivity Revan indices of chemical structures in drugs, International Journal of Engineering Sciences and Research Technology, 7(5)(2018), 11-16.
- [15] V.R.Kulli, Computing the F-ve-degree index and its polynomial of dominating oxide and regular triangulate oxide networks, International Journal of Fuzzy Mathematical Archive, 16(1)(2018), 1-6.
- [16] V.R.Kulli, Computation of F-reverse and modified reverse indices of some nanostructures, Annals of Pure and Applied Mathematics, 18(1)(2018), 37-43.
- [17] V.R.Kulli and M.H.Akhbari, Multiplicative atom bond connectivity and multiplicative geometric-arithmetic indices of dendrimer nanostars, Annals of Pure and Applied Mathematics, 16(2)(2018), 429-436.
- [18] A.Milicevic, S. Nikolic and N. Trinajstic, On reformulated Zagreb indices, Molecular Diversity, 8(2004), 393-399.
- [19] G.H.Shirdel, H.Rezapour and A.M.Sayadi, The hyper-Zagreb index of graph operations, Iranian J. Math. Chem., 4(2)(2013), 213-220.
- [20] B.Zhou and N.Trinajstic, On a novel connectivity index, J. Math. Chem., 46(2009), 1252-1270.

12

- [21] N.De, On molecular topological properties of TiO₂ nanotubes, Journal of Nanoscience, (2016), Article ID 1028031, 5 pages.
- [22] V.R.Kulli, Computation of general topological indices for titania nanotubes, International Journal of Mathematical Archive, 7(12)(2016), 33-38.
- [23] V.R.Kulli, Computation of some Gourava indices of titania nanotubes, International Journal of Fuzzy Mathematical Archive, 12(2)(2017), 75-81.