Hyper-Revan Indices and their Polynomials of Silicate Networks

V. R. Kulli ${ }^{1, *}$
1 Department of Mathematics, Gulbarga University, Gulbarga, India.

Abstract

We propose the first and second hyper-Revan indices of a molecular graph. Considering these hyper-Revan indices, we define the first and second hyper-Revan polynomials of a graph. In this paper, we compute the first and second hyper-Revan indices and their polynomials of certain family of networks such as silicate networks.

MSC: 05C05, 05C07, 05C35.

Keywords: Hyper-Revan indices, silicate network.
(c) JS Publication.

1. Introduction

A molecular graph is a graph whose vertices correspond to the atoms and the edges to the bonds, Chemical graph theory has an important effect on the development of Chemical Sciences, see [1]. Let G be a finite, simple, connected graph with vertex set $V(G)$ and edge set $E(G)$. The degree $d_{G}(v)$ of a vertex v is the number of vertices adjacent to v. Let $\Delta(G)(\delta(G))$ denote the maximum (minimum) degree among the vertices of G. The revan vertex degree of a vertex v in G is defined as $r_{G}(v)=\Delta(G)+\delta(G)-d_{G}(v)$. The revan edge connecting the revan vertices u and v will be denoted by $u v$. We refer [2], for other undefined notations and terminologies. The first and second Revan indices of a graph G are defined as

$$
R_{1}(G)=\sum_{u v \in E(G)}\left[r_{G}(u)+r_{G}(v)\right], \quad R_{2}(G)=\sum_{u v \in E(G)} r_{G}(u) r_{G}(v)
$$

The Revan indices were introduced by Kulli in [3] and were studied, for example, in [4, 5]. Considering the Revan indices, the first and second Ravan polynomials [6] of a graph were defined as follows:

The first and second Revan polynomials of a graph G are defined as

$$
R_{1}(G, x)=\sum_{u v \in E(G)} x^{r_{G}(u)+r_{G}(v)}, \quad R_{2}(G, x)=\sum_{u v \in E(G)} x^{r_{G}(u) r_{G}(v)} .
$$

We introduce the first and second hyper-Revan indices as

$$
H R_{1}(G)=\sum_{u v \in E(G)}\left[r_{G}(u)+r_{G}(v)\right]^{2}, \quad H R_{2}(G)=\sum_{u v \in E(G)}\left[r_{G}(u) r_{G}(v)\right]^{2}
$$

[^0]Considering hyper-Revan indices, we propose the first and second hyper-Revan polynomials of a graph G as

$$
H R_{1}(G, x)=\sum_{u v \in E(G)} x^{\left[r_{G}(u)+r_{G}(v)\right]^{2}}, H R_{2}(G, x)=\sum_{u v \in E(G)} x^{\left[r_{G}(u) r_{G}(v)\right]^{2}} .
$$

The third Revan index [3] of a graph G is defined as

$$
R_{3}(G)=\sum_{u v \in E(G)}\left|r_{G}(u)-r_{G}(v)\right| .
$$

Considering the third Revan index, Kulli defined the third Revan polynomial [5] as

$$
R_{3}(G, x)=\sum_{u v \in E(G)} x^{\left|r_{G}(u)-r_{G}(v)\right|} .
$$

Recently, several topological indices were studied, for example, in [7-17]. In this paper, the first and second hyper-Revan indices and their polynomials of silicate networks are determined. For silicate networks see [5].

2. Results

A silicate network is symbolized by $S L_{n}$ where n is the number of hexagons between the center and boundary of $S L_{n}$. These networks are obtained by fusing metal oxides or metal carbonates with sand. A silicate network of dimension 2 is depicted in Figure 1.

Figure 1: A 2-dimensional silicate network

Let G be the graph of silicate network $S L_{n}$. By calculation, G has $15 n^{2}+3 n$ vertices and $36 n^{2}$ edges. From Figure 1, it is easy to see that the vertices of $S L_{n}$ are either of degree 3 or 6 . Thus $\Delta(G)=6, \delta(G)=3$ and therefore $r_{G}(u)=9-d_{G}(u)$. In $S L_{n}$, by algebraic method, there are three types of edges based on the degree of the vertices of each edge as follows:

$$
\begin{aligned}
& E_{33}=\left\{u v \in E(G) \mid d_{G}(u)=d_{G}(v)=3\right\},\left|E_{33}\right|=6 n . \\
& E_{36}=\left\{u v \in E(G) \mid d_{G}(u)=3, d_{G}(v)=6\right\},\left|E_{36}\right|=18 n^{2}+6 n . \\
& E_{66}=\left\{u v \in E(G) \mid d_{G}(u)=d_{G}(v)=6\right\},\left|E_{66}\right|=18 n^{2}-12 n .
\end{aligned}
$$

Thus there are three types of Revan edges based on the degree of end Revan vertices of each Revan edge as given in Table 1.

$r_{G}(u), r_{G}(v) / u v \in E(G)$	$(6,6)$	$(6,3)$	$(3,3)$
Number of edges	6 n	$18 n^{2}+6 \mathrm{n}$	$18 n^{2}-12 n$

Table 1: Revan edge partition of G

In the following theorem, we compute the value of $R_{1}\left(S L_{n}, x\right), R_{2}\left(S L_{n}, x\right)$ for silicate networks.

Theorem 2.1. The first and second Revan polynomials of a silicate network are given by
(1). $R_{1}\left(S L_{n}, x\right)=6 n x^{12}+\left(18 n^{2}+6 n\right) x^{9}+\left(18 n^{2}-12 n\right) x^{6}$.
(2). $R_{2}\left(S L_{n}, x\right)=6 n x^{36}+\left(18 n^{2}+6 n\right) x^{18}+\left(18 n^{2}-12 n\right) x^{9}$.

Proof. Let G be the graph of silicate network $S L_{n}$.
(1). By using the partition given in Table 1, we can apply the formula of the first Ravan Polynomial of silicate network $S L_{n}$. Since $R_{1}(G, x)=\sum_{u v \in E(G)} x^{r_{G}(u)+r_{G}(v)}$, this implies that

$$
\begin{aligned}
R_{1}\left(S L_{n}, x\right) & =6 n x^{6+6}+\left(18 n^{2}+6 n\right) x^{6+3}+\left(18 n^{2}-12 n\right) x^{3+3} \\
& =6 n x^{12}+\left(18 n^{2}+6 n\right) x^{9}+\left(18 n^{2}-12 n\right) x^{6}
\end{aligned}
$$

(2). By using the partition given Table 1, we can apply the formula of the second Revan Polynomial of silicate network $S L_{n}$. Since $R_{2}(G, x)=\sum_{u v \in E(G)} x^{r_{G}(u) r_{G}(v)}$, this implies that

$$
\begin{aligned}
R_{1}\left(S L_{n}, x\right) & =6 n x^{6 \times 6}+\left(18 n^{2}+6 n\right) x^{6 \times 3}+\left(18 n^{2}-12 n\right) x^{3 \times 3} \\
& =6 n x^{36}+\left(18 n^{2}+6 n\right) x^{18}+\left(18 n^{2}-12 n\right) x^{9}
\end{aligned}
$$

In the following theorem, we compute the third Revan index and its polynomial of silicate networks.

Theorem 2.2. The third Revan index and its polynomial of a silicate network are given by
(1). $R_{3}\left(S L_{n}\right)=54 n^{2}+18 n$.
(2). $R_{3}\left(S L_{n}, x\right)=\left(18 n^{2}+6 n\right) x^{3}+\left(18 n^{2}-6 n\right)$.

Proof. Let G be the graph of silicate network $S L_{n}$.
(1). By using the partition given in Table 1, we can apply the formula of the third Revan index of silicate network $S L_{n}$. Since $R_{3}(G)=\sum_{u v \in E(G)}\left|r_{G}(u)-r_{G}(v)\right|$, this implies that

$$
\begin{aligned}
R_{3}\left(S L_{n}\right) & =6 n \times 0+\left(18 n^{2}+6 n\right) 3+\left(18 n^{2}-12 n\right) \times 0 \\
& =54 n^{2}+18 n
\end{aligned}
$$

(2). By using the partition given in Table 1, we can apply the formula of the third Revan Polynomial of silicate network $S L_{n}$. Since $R_{3}(G, x)=\sum_{u v \in E(G)} x^{\left|r_{G}(u)-r_{G}(v)\right|}$, this implies that

$$
\begin{aligned}
R_{3}\left(S L_{n}, x\right) & =6 n x^{0}+\left(18 n^{2}+6 n\right) x^{3}+\left(18 n^{2}-12 n\right) x^{0} . \\
& =\left(18 n^{2}+6 n\right) x^{3}+\left(18 n^{2}-6 n\right) .
\end{aligned}
$$

In the following theorem, we compute the value of $H R_{1}\left(S L_{n}\right)$ and $H R_{2}\left(S L_{n}\right)$ for silicate networks.

Theorem 2.3. The first and second hyper-Revan indices of a silicate network are given by
(1). $H R_{1}\left(S L_{n}\right)=2106 n^{2}+918 n$.
(2). $H R_{2}\left(S L_{n}\right)=7290 n^{2}+8748 n$.

Proof. Let G be the graph of silicate network $S L_{n}$.
(1). By using the partition given in Table 1, we can apply the formula of the first hyper-Revan index of G. Since $H R_{1}(G)=$ $\sum_{u v \in E(G)}\left[r_{G}(u)+r_{G}(v)\right]^{2}$, this implies that

$$
\begin{aligned}
H R_{1}\left(S L_{n}\right) & =6 n(6+6)^{2}+\left(18 n^{2}+6 n\right)(6+3)^{2}+\left(18 n^{2}-12 n\right)(3+3)^{2} \\
& =2106 n^{2}+918 n
\end{aligned}
$$

(2). By using the partition given in Table 1, we can apply the formula of the second hyper-Revan index of G. Since $H R_{2}(G)=\sum_{u v \in E(G)}\left[r_{G}(u) r_{G}(v)\right]^{2}$, this implies that

$$
\begin{aligned}
H R_{2}\left(S L_{n}\right) & =6 n(6 \times 6)^{2}+\left(18 n^{2}+6 n\right)(6 \times 3)^{2}+\left(18 n^{2}-12 n\right)(3 \times 3)^{2} \\
& =7290 n^{2}+8748 n
\end{aligned}
$$

In the following theorem, we compute the first and second hyper-Revan polynomials of silicate networks.

Theorem 2.4. The first and second hyper-Revan Polynomials of a silicate network are given by
(1). $H R_{1}\left(S L_{n}, x\right)=6 n x^{144}+\left(18 n^{2}+6 n\right) x^{81}+\left(18 n^{2}-12 n\right) x^{36}$.
(2). $H R_{2}\left(S L_{n}, x\right)=6 n x^{1296}+\left(18 n^{2}+6 n\right) x^{328}+\left(18 n^{2}-12 n\right) x^{81}$.

Proof. Let G be the graph of silicate network $S L_{n}$.
(1). By using the partition given Table 1, we can apply the formula of the first hyper-Revan polynomial of a silicate network $S L_{n}$. Since $H R_{1}(G, x)=\sum_{u v \in E(G)} x^{\left[r_{G}(u)+r_{G}(v)\right]^{2}}$, this implies that

$$
\begin{aligned}
H R_{1}\left(S L_{n}, x\right) & =6 n x^{(6+6)^{2}}+\left(18 n^{2}+6 n\right) x^{(6+3)^{2}}+\left(18 n^{2}-12 n\right) x^{(3+3)^{2}} . \\
& =6 n x^{144}+\left(18 n^{2}+6 n\right) x^{81}+\left(18 n^{2}-12 n\right) x^{36}
\end{aligned}
$$

(2). By using the partition given in Table 1, we can apply the formula of the second hyper-Revan polynomial of a silicate network $S L_{n}$. Since $H R_{2}(G, x)=\sum_{u v \in E(G)} x^{\left[r_{G}(u) r_{G}(v)\right]^{2}}$, this implies that

$$
\begin{aligned}
H R_{2}\left(S L_{n}, x\right) & =6 n x^{(6 \times 6)^{2}}+\left(18 n^{2}+6 n\right) x^{(6 \times 3)^{2}}+\left(18 n^{2}-12 n\right) x^{(3 \times 3)^{2}} \\
& =6 n x^{1296}+\left(18 n^{2}+6 n\right) x^{324}+\left(18 n^{2}-12 n\right) x^{81}
\end{aligned}
$$

References

[1] I.Gutman and O.E.Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin, (1986).
[2] V.R.Kulli, College Graph Theory, Vishwa International Publications, Gulbarga, India (2012).
[3] V.R.Kulli, Revan indices of oxide and honeycomb networks, International Journal of Mathematics and its Applications, 5(4-E)(2017), 663-667.
[4] V.R.Kulli, On the product connectivity Revan index of certain nanotubes, Journal of Computer and Mathematical Sciences, 8(10)(2017), 562-567.
[5] V.R.Kulli, The sum connectivity Revan index of silicate and hexagonal networks, Annals of Pure and Applied Mathematics, 14(3)(2017), 401-406.
[6] V.R.Kulli, Revan indices and their polynomials of certain rhombus networks, submitted.
[7] V.R.Kulli, On the product connectivity reverse index of silicate and hexagonal networks, International Journal of Mathematics and its Applications, 5(4-B)(2017), 175-179.
[8] V.R.Kulli, On the sum connectivity reverse index of oxide and honeycomb networks, Journal of Computer and Mathematical Sciences, 8(9)(2017), 408-413.
[9] V.R.Kulli, Geometric-arithmetic reverse and sum connectivity reverse indices of silicate and hexagonal networks, International Journal of Current Research in Science and Technology, 3(10)(2017), 29-33.
[10] V.R.Kulli, Reverse Zagreb and reverse hyper-Zagreb indices and their polynomials of rhombus silicate networks, Annals of Pure and Applied Mathematics, 16(1)(2018), 47-51.
[11] V.R.Kulli, General Zagreb polynomials and F-polynomial of certain nanostructures, International Journal of Mathematical Archive, 8(10)(2017), 103-109.
[12] V.R.Kulli, Certain topological indices and their polynomials of dendrimer nanostars, Annals of Pure and Applied Mathematics, 14(2)(2017), 263-268.
[13] V.R.Kulli, General fifth M-Zagreb indices and fifth M-Zagreb polynomials of PAMAM dendrimers, International Journal of Fuzzy Mathematical Archive, 13(1)(2017), 99-103.
[14] V.R.Kulli, On K-hyper-Banhatti indices and coindices of graphs, International Research Journal of Pure Algebra, 6(5)(2016), 300-304.
[15] V.R.Kulli, The Gourava indices and coindices of graphs, Annals of Pure and Applied Mathematics, 14(1)(2017), 33-38.
[16] V.R.Kulli, On the sum connectivity Gourava index, International Journal of Mathematical Archive, 8(7)(2017), 211-217.
[17] V.R.Kulli, New multiplicative arithmetic-geometric indices, Journal of Ultra Scientist of Physical Sciences, A, 29(6)(2017), 205-211.

[^0]: * E-mail: vrkulli@gmail.com

