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1. Introduction

Let G be a finite, simple, connected graph with vertex set V(G) and edge set E(G). Let da(v) denote the degree of a
vertex v in G. Let A(G) denote the maximum degree among the vertices of G. The reverse vertex degree of a vertex wu
in G is defined as ¢y, = A(G) — da(u) + 1. The reverse edge connecting the reverse vertices v and v will be denoted by
uv. For all further notation and terminology we refer to reader to [1]. Chemical graph theory is a branch of Mathematical
Chemistry which has an important effect on the development of the chemical sciences. A topological index is a numerical
parameter mathematically derived from the graph structure. Numerous such topological indices have been considered in
Theoretical Chemistry. Recently we introduced the atom bond connectivity reverse index [2] of a graph G as

Cu+cCy—2
CuCo ’

ABCC(G)= >

weE(G)

The sum connectivity reverse index was introduced by Kulli in [3]. The sum connectivity reverse index of a graph G is
defined as

sc@= Y ﬁ

uwveE(G)

Recently some reverse indices were studied, for example, in [4-6]. We now introduce the geometric-arithmetic reverse index

of a graph G as
2y/cucy

Cy + Cy

GAC(G)= > (1)

uwveE(G)

Recently several topological indices were studied, for example, in [7-17]. In this paper, the geometric-arithmetic reverse
index and sum connectivity reverse index of silicate networks and hexagonal networks are computed. For silicate networks

and hexagonal networks see [18].
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2. Results for Silicate Networks

Silicates are obtained by fusing metal oxide or metal carbonates with sand. A silicate network is symbolized by SL,, where n
is the number of hexagons between the center and boundary of SL,. A 2-dimensional silicate network is depicted in Figure

1.

Figure 1: A 2-dimensional silicate network

Let G be the graph of silicate network SL,,. From Figure 1, it is easy to see that the vertices of SL,, are either of degree
3 or 6. Then A(G) = 6. By algebraic method, we obtain that |V (SL,)| = 15n® 4+ 3n and |E(SL,)| = 36n>. In SL,, by

algebraic method, there are three types of edges based on the degree of the end vertices of each edge as follows:

Es3 = {uv € E(G)|da(u) = da(v) = 3}, |E33| = 6n.
Fs6 = {uwv € E(Q)|da(u) = 3,dg(v) = 6}, |Ezs| = 18n° + 6n.

Ess = {uv € E(G)|dg(u) = da(v) = 6}, |Ess| = 18n° — 12n.
We have ¢, = A(G) —da(u) +1=7—dg(u). Thus there are three types of reverse edges of follows:

CEu = {uwv € E(G)|cy = ¢y =4}, |CE 44| = 6n.
CEun = {w € E(G)|cy =4,¢, =1}, |CEun|=18n> + 6n.

CEll = {UU S E(G)‘Cu = Cy = 1}, ‘CE11| = 18”2 — 12n.

In the following theorem, we compute the geometric-arithmetic reverse index of silicate networks.

Theorem 2.1. The geometric-arithmetic reverse index of silicate networks is given by

GAC (SL,) = %nQ - gn.

Proof. By definition, we have

2+/CuCop

Cu + Cy

GAC(G)= Y

uwveE(G)
Thus

GAC (SL.)= Y 2Veue | T 2veucs > 2\/Cucy
CE. CE

Cy + Co Cy + Cy Cu + Cy
CEy4 41 1
2¢/4 X 4 2v/4 x 1 2 2v/1x1 2
= —— — | (1 — | (1 —12
(4+4 >6n—|—<4+1>(8n +6n)+<1+1 (Sn n)
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In the following theorem, we compute the sum connectivity reverse index of silicate networks.

Theorem 2.2. The sum connectivity reverse index of silicate networks is given by

- (2 5) (5-5)-

Proof. By definition, we have

5¢ Z Veu + Co

uwveE(G)

Thus

1 1 1
SC(SL,) = P — I
-8 gt T e T

= (ﬁ) 6n + ( ) (18n” + 6n) + (\/%) (18n* — 12n)
SCRORNERSE
3. Results for Hexagonal Networks

A triangular tiling is used in the construction of hexagonal networks. A hexagonal network is symbolized by HX,, where n

is the number of vertices in each side of hexagon. A hexagonal network of dimension six is depicted in Figure 2.
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Figure 2: A 6-dimensional hexagonal network

Let H be the graph of hexagonal network H X,,. By calculation, we obtain that |V (HX,)| = 3n? —3n+1 and |E(HX,)| =
9n? — 15n 4+ 6. From Figure 2, one can see that the vertices of HX,, are either of degree 3, 4 or 6. Then A(H) = 6. In H,

by algebraic method, there are five types of edges based on the degree of the end vertices of each edge as follows:

Ess = {wv € E(H)|du(u) = 3,du(v) =4}, |Esa| = 12.

Ess = {uwv € E(H)|du(u) = 3,du(v) = 6}, |Es¢| =6.

Bas = {w € E(H)|du(u) = dg(v) =4},  |Eal = 6n — 18,
Fu = {uwv € E(H)|dg(u) = 4,dc(v) = 6}, |Eag| = 12n — 24.

Ess = {uv € E(H)|da(u) = de(v) =6},  |Ess| = 9n® — 33n + 30.
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Clearly, we have ¢, = A(H) —du(u) + 1 =7 — dg(u). Thus there are five types of reverse edges as follows:

CE43 = {uv € E(H)|cy, = 4,c, =3}, |CEa3|=12.
CEqn = {wv € E(H)|cy = 4,¢o =1}, |CEq|=6.

CEs3 = {uwv € E(H)|cu =cy =3}, |CEs3| = 6n—18.
CE3 = {uv € E(H)|c, =3,¢co, =1}, |CE31| = 12n — 24.

CEn ={w € E(H)|cu =c, =1},  |CE1n| =90 — 33n + 30.

In the following theorem, we compute the geometric-arithmetic reverse index of hexagonal networks.

Theorem 3.1. The geometric-arithmetic reverse index of hexgonal networks is given by

GAC (HX,) =9n” + (6v3 = 27) n + (48—‘[ +=+ 12) .

Proof. By definition, we have

cAC(H)= 3 2y/Cucy

Cy +c
uwveE(H) “ v

Thus

2+/CuCo 2./CuCy 2./CuCy 2./CuCy 2+/CuCo
SN S I S Iy S Ty S

c c c c
CEy3 CEy41 utCo CEs3 CEs; Eq1 utCo

- (%@) 12+ (%‘/T) 6+ <@> (6n
+ (@) (12n — 24) + (@

=on” + (6V3—27) n+ (M+—+12>

GAC (HX,)

) (9 — 33n + 30)
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In the following theorem, we compute the sum connectivity reverse index of hexagonal networks.

Theorem 3.2. The sum connectivity reverse index of hexgonal networks is given by

SC(HXn):%n2+<f+6 \3/?1> +<%+7—3\f 12+%>

Proof. By definition, we have

uwveE(H) Cu +CU

Thus

1 1 1 1 1
SOUIX) = 30 e+ 0 e b 3 e b 3 et S
Oy VCu + ¢y Gy VCu + ¢y Oy VCu + ¢y Gy VCu + ¢y Oy VCu + ¢y

_ (ﬁ) 12 + (ﬁ) 6+ (ﬁ) (6n — 18)

4 (\/%) (12n — 24) + (\/llﬁ) (9n — 33n + 30)

s () (B g ).
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