International Journal of Current Research in Science and Technology

Geometric-Arithmetic Reverse and Sum Connectivity Reverse Indices of Silicate and Hexagonal Networks

Research Article

V.R.Kulli ${ }^{1, *}$
1 Department of Mathematics, Gulbarga University, Gulbarga, Karnataka, India.

Abstract

We introduce a new index known as geometric-arithmetic reverse index of a molecular graph. In this paper, we compute geometric-arithmetic reverse index and sum connectivity reverse index of different chemically interesting networks like silicate networks and hexagonal networks.

MSC: $\quad 05 \mathrm{C} 05,05 \mathrm{C} 12,05 \mathrm{C} 35$.

Keywords: Geometric-arithmetic reverse index, sum connectivity reverse index, silicate network, hexagonal network.
(C) JS Publication.

1. Introduction

Let G be a finite, simple, connected graph with vertex set $V(G)$ and edge set $E(G)$. Let $d_{G}(v)$ denote the degree of a vertex v in G. Let $\Delta(G)$ denote the maximum degree among the vertices of G. The reverse vertex degree of a vertex u in G is defined as $c_{u}=\Delta(G)-d_{G}(u)+1$. The reverse edge connecting the reverse vertices u and v will be denoted by $u v$. For all further notation and terminology we refer to reader to [1]. Chemical graph theory is a branch of Mathematical Chemistry which has an important effect on the development of the chemical sciences. A topological index is a numerical parameter mathematically derived from the graph structure. Numerous such topological indices have been considered in Theoretical Chemistry. Recently we introduced the atom bond connectivity reverse index [2] of a graph G as

$$
A B C C(G)=\sum_{u v \in E(G)} \sqrt{\frac{c_{u}+c_{v}-2}{c_{u} c_{v}}} .
$$

The sum connectivity reverse index was introduced by Kulli in [3]. The sum connectivity reverse index of a graph G is defined as

$$
S C(G)=\sum_{u v \in E(G)} \frac{1}{\sqrt{c_{u}+c_{v}}} .
$$

Recently some reverse indices were studied, for example, in [4-6]. We now introduce the geometric-arithmetic reverse index of a graph G as

$$
\begin{equation*}
G A C(G)=\sum_{u v \in E(G)} \frac{2 \sqrt{c_{u} c_{v}}}{c_{u}+c_{v}} . \tag{1}
\end{equation*}
$$

Recently several topological indices were studied, for example, in [7-17]. In this paper, the geometric-arithmetic reverse index and sum connectivity reverse index of silicate networks and hexagonal networks are computed. For silicate networks and hexagonal networks see [18].

[^0]
2. Results for Silicate Networks

Silicates are obtained by fusing metal oxide or metal carbonates with sand. A silicate network is symbolized by $S L_{n}$ where n is the number of hexagons between the center and boundary of $S L_{n}$. A 2-dimensional silicate network is depicted in Figure 1.

Figure 1: A 2-dimensional silicate network

Let G be the graph of silicate network $S L_{n}$. From Figure 1, it is easy to see that the vertices of $S L_{n}$ are either of degree 3 or 6 . Then $\Delta(G)=6$. By algebraic method, we obtain that $\left|V\left(S L_{n}\right)\right|=15 n^{2}+3 n$ and $\left|E\left(S L_{n}\right)\right|=36 n^{2}$. In $S L_{n}$, by algebraic method, there are three types of edges based on the degree of the end vertices of each edge as follows:

$$
\begin{array}{ll}
E_{33}=\left\{u v \in E(G) \mid d_{G}(u)=d_{G}(v)=3\right\}, & \left|E_{33}\right|=6 n . \\
E_{36}=\left\{u v \in E(G) \mid d_{G}(u)=3, d_{G}(v)=6\right\}, & \left|E_{36}\right|=18 n^{2}+6 n . \\
E_{66}=\left\{u v \in E(G) \mid d_{G}(u)=d_{G}(v)=6\right\}, & \left|E_{66}\right|=18 n^{2}-12 n .
\end{array}
$$

We have $c_{u}=\Delta(G)-d_{G}(u)+1=7-d_{G}(u)$. Thus there are three types of reverse edges of follows:

$$
\begin{array}{ll}
C E_{44}=\left\{u v \in E(G) \mid c_{u}=c_{v}=4\right\}, & \left|C E_{44}\right|=6 n . \\
C E_{41}=\left\{u v \in E(G) \mid c_{u}=4, c_{v}=1\right\}, & \left|C E_{41}\right|=18 n^{2}+6 n . \\
C E_{11}=\left\{u v \in E(G) \mid c_{u}=c_{v}=1\right\}, & \left|C E_{11}\right|=18 n^{2}-12 n .
\end{array}
$$

In the following theorem, we compute the geometric-arithmetic reverse index of silicate networks.
Theorem 2.1. The geometric-arithmetic reverse index of silicate networks is given by

$$
G A C\left(S L_{n}\right)=\frac{162}{5} n^{2}-\frac{6}{5} n
$$

Proof. By definition, we have

$$
G A C(G)=\sum_{u v \in E(G)} \frac{2 \sqrt{c_{u} c_{v}}}{c_{u}+c_{v}}
$$

Thus

$$
\begin{aligned}
G A C\left(S L_{n}\right) & =\sum_{C E_{44}} \frac{2 \sqrt{c_{u} c_{v}}}{c_{u}+c_{v}}+\sum_{C E_{41}} \frac{2 \sqrt{c_{u} c_{v}}}{c_{u}+c_{v}}+\sum_{C E_{11}} \frac{2 \sqrt{c_{u} c_{v}}}{c_{u}+c_{v}} \\
& =\left(\frac{2 \sqrt{4 \times 4}}{4+4}\right) 6 n+\left(\frac{2 \sqrt{4 \times 1}}{4+1}\right)\left(18 n^{2}+6 n\right)+\left(\frac{2 \sqrt{1 \times 1}}{1+1}\right)\left(18 n^{2}-12 n\right) \\
& =\frac{162}{5} n^{2}-\frac{6}{5} n .
\end{aligned}
$$

In the following theorem, we compute the sum connectivity reverse index of silicate networks.

Theorem 2.2. The sum connectivity reverse index of silicate networks is given by

$$
S C\left(S L_{n}\right)=\left(\frac{18}{\sqrt{5}}+\frac{18}{\sqrt{2}}\right) n^{2}+\left(\frac{6}{\sqrt{5}}-\frac{9}{\sqrt{2}}\right) n .
$$

Proof. By definition, we have

$$
S C(G)=\sum_{u v \in E(G)} \frac{1}{\sqrt{c_{u}+c_{v}}}
$$

Thus

$$
\begin{aligned}
S C\left(S L_{n}\right) & =\sum_{C E_{44}} \frac{1}{\sqrt{c_{u}+c_{v}}}+\sum_{C E_{41}} \frac{1}{\sqrt{c_{u}+c_{v}}}+\sum_{C E_{11}} \frac{1}{\sqrt{c_{u}+c_{v}}} \\
& =\left(\frac{1}{\sqrt{4+4}}\right) 6 n+\left(\frac{1}{\sqrt{4+1}}\right)\left(18 n^{2}+6 n\right)+\left(\frac{1}{\sqrt{1+1}}\right)\left(18 n^{2}-12 n\right) \\
& =\left(\frac{18}{\sqrt{5}}+\frac{18}{\sqrt{2}}\right) n^{2}+\left(\frac{6}{\sqrt{5}}-\frac{9}{\sqrt{2}}\right) n .
\end{aligned}
$$

3. Results for Hexagonal Networks

A triangular tiling is used in the construction of hexagonal networks. A hexagonal network is symbolized by $H X_{n}$ where n is the number of vertices in each side of hexagon. A hexagonal network of dimension six is depicted in Figure 2 .

Figure 2: A 6-dimensional hexagonal network

Let H be the graph of hexagonal network $H X_{n}$. By calculation, we obtain that $\left|V\left(H X_{n}\right)\right|=3 n^{2}-3 n+1$ and $\left|E\left(H X_{n}\right)\right|=$ $9 n^{2}-15 n+6$. From Figure 2, one can see that the vertices of $H X_{n}$ are either of degree 3, 4 or 6 . Then $\Delta(H)=6$. In H, by algebraic method, there are five types of edges based on the degree of the end vertices of each edge as follows:

$$
\begin{array}{ll}
E_{34}=\left\{u v \in E(H) \mid d_{H}(u)=3, d_{H}(v)=4\right\}, & \left|E_{34}\right|=12 . \\
E_{36}=\left\{u v \in E(H) \mid d_{H}(u)=3, d_{H}(v)=6\right\}, & \left|E_{36}\right|=6 . \\
E_{44}=\left\{u v \in E(H) \mid d_{H}(u)=d_{H}(v)=4\right\}, & \left|E_{44}\right|=6 n-18 . \\
E_{46}=\left\{u v \in E(H) \mid d_{G}(u)=4, d_{G}(v)=6\right\}, & \left|E_{46}\right|=12 n-24 . \\
E_{66}=\left\{u v \in E(H) \mid d_{G}(u)=d_{G}(v)=6\right\}, & \left|E_{66}\right|=9 n^{2}-33 n+30 .
\end{array}
$$

Clearly, we have $c_{u}=\Delta(H)-d_{H}(u)+1=7-d_{H}(u)$. Thus there are five types of reverse edges as follows:

$$
\begin{array}{ll}
C E_{43}=\left\{u v \in E(H) \mid c_{u}=4, c_{v}=3\right\}, & \left|C E_{43}\right|=12 . \\
C E_{41}=\left\{u v \in E(H) \mid c_{u}=4, c_{v}=1\right\}, & \left|C E_{41}\right|=6 . \\
C E_{33}=\left\{u v \in E(H) \mid c_{u}=c_{v}=3\right\}, & \left|C E_{33}\right|=6 n-18 . \\
C E_{31}=\left\{u v \in E(H) \mid c_{u}=3, c_{v}=1\right\}, & \left|C E_{31}\right|=12 n-24 . \\
C E_{11}=\left\{u v \in E(H) \mid c_{u}=c_{v}=1\right\}, & \left|C E_{11}\right|=9 n^{2}-33 n+30 .
\end{array}
$$

In the following theorem, we compute the geometric-arithmetic reverse index of hexagonal networks.

Theorem 3.1. The geometric-arithmetic reverse index of hexgonal networks is given by

$$
G A C\left(H X_{n}\right)=9 n^{2}+(6 \sqrt{3}-27) n+\left(\frac{48 \sqrt{3}}{7}+\frac{24}{5}+12\right) .
$$

Proof. By definition, we have

$$
G A C(H)=\sum_{u v \in E(H)} \frac{2 \sqrt{c_{u} c_{v}}}{c_{u}+c_{v}} .
$$

Thus

$$
\begin{aligned}
G A C\left(H X_{n}\right)= & \sum_{C E_{43}} \frac{2 \sqrt{c_{u} c_{v}}}{c_{u}+c_{v}}+\sum_{C E_{41}} \frac{2 \sqrt{c_{u} c_{v}}}{c_{u}+c_{v}}+\sum_{C E_{33}} \frac{2 \sqrt{c_{u} c_{v}}}{c_{u}+c_{v}}+\sum_{C E_{31}} \frac{2 \sqrt{c_{u} c_{v}}}{c_{u}+c_{v}}+\sum_{C E_{11}} \frac{2 \sqrt{c_{u} c_{v}}}{c_{u}+c_{v}} \\
= & \left(\frac{2 \sqrt{4 \times 3}}{4+3}\right) 12+\left(\frac{2 \sqrt{4 \times 1}}{4+1}\right) 6+\left(\frac{2 \sqrt{3 \times 3}}{3+3}\right)(6 n-18) \\
& +\left(\frac{2 \sqrt{3 \times 1}}{3+1}\right)(12 n-24)+\left(\frac{2 \sqrt{1 \times 1}}{1+1}\right)\left(9 n^{2}-33 n+30\right) \\
= & 9 n^{2}+(6 \sqrt{3}-27) n+\left(\frac{48 \sqrt{3}}{7}+\frac{24}{5}+12\right) .
\end{aligned}
$$

In the following theorem, we compute the sum connectivity reverse index of hexagonal networks.

Theorem 3.2. The sum connectivity reverse index of hexgonal networks is given by

$$
S C\left(H X_{n}\right)=\frac{9}{\sqrt{2}} n^{2}+\left(\sqrt{6}+6-\frac{33}{\sqrt{2}}\right) n+\left(\frac{12}{\sqrt{7}}+\frac{6}{\sqrt{5}}-3 \sqrt{6}-12+\frac{30}{\sqrt{2}}\right) .
$$

Proof. By definition, we have

$$
S C(H)=\sum_{u v \in E(H)} \frac{1}{\sqrt{c_{u}+c_{v}}} .
$$

Thus

$$
\begin{aligned}
S C\left(H X_{n}\right)= & \sum_{C E_{43}} \frac{1}{\sqrt{c_{u}+c_{v}}}+\sum_{C E_{41}} \frac{1}{\sqrt{c_{u}+c_{v}}}+\sum_{C E_{33}} \frac{1}{\sqrt{c_{u}+c_{v}}}+\sum_{C E_{31}} \frac{1}{\sqrt{c_{u}+c_{v}}}+\sum_{C E_{11}} \frac{1}{\sqrt{c_{u}+c_{v}}} \\
= & \left(\frac{1}{\sqrt{4+3}}\right) 12+\left(\frac{1}{\sqrt{4+1}}\right) 6+\left(\frac{1}{\sqrt{3+3}}\right)(6 n-18) \\
& +\left(\frac{1}{\sqrt{3+1}}\right)(12 n-24)+\left(\frac{1}{\sqrt{1+1}}\right)\left(9 n^{2}-33 n+30\right) \\
= & \frac{9}{\sqrt{2}} n^{2}+\left(\sqrt{6}+6-\frac{33}{\sqrt{3}}\right) n+\left(\frac{12}{\sqrt{7}}+\frac{6}{\sqrt{5}}-3 \sqrt{6}-12+\frac{30}{\sqrt{2}}\right) .
\end{aligned}
$$

References

[1] V.R.Kulli, College Graph Theory, Vishwa International Publications, Gulbarga, India, (2012).
[2] V.R.Kulli, Atom bond connectivity reverse and product connectivity reverse indices of oxide and honeycomb networks, submitted.
[3] V.R.Kulli, On the sum connectivity reverse index of oxide and honeycomb networks, Journal of Computer and Mathematical Sciences, 8(9)(2017), 408-413.
[4] S.Ediz, Maximal graphs of the first reverse Zagreb beta index, TWMS J. App. Eng. Math. accepted for publication.
[5] V.R.Kulli, On the product connectivity reverse index of silicate and hexagonal networks, International Journal of Mathematics and its Applications, 5(4B)(2017), 175179.
[6] V.R.Kulli, Reverse Zagreb and reverse hyper-Zagreb indices and their polynomials of rhombus silicate networks, submitted.
[7] I.Gutman and N.Trinajstic, Graph theory and molecular orbitals, Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17(1972), 535-538.
[8] V.R.Kulli, K-Banhatti indices of graphs, Journal of Computer and Mathematical Sciences, 7(4)(2016), 213-218.
[9] V.R.Kulli, On K-hyper-Banhatti indices and coindices of graphs, International Research Journal of Pure Algebra, 6(5)(2016), 300-304.
[10] V.R.Kulli, New K Banhatti topological indices, International Journal of Fuzzy Mathematical Archive, 12(1)(2017), 29-37.
[11] V.R.Kulli, The Gourava indices and coindices of graphs, Annals of Pure and Applied Mathematics, 14(1)(2017), 33-38.
[12] V.R.Kulli, Computation of general topological indices for titania nanotubes, International Journal of Mathematical Archive, 7(12)(2016), 33-38.
[13] V.R.Kulli, First multiplicative K Banhatti index and coindex of graphs, Annals of Pure and Pure and Applied Mathematics, 11(2)(2016), 79-82.
[14] V.R.Kulli, Some new multiplicative geometric-arithmetic indices, Journal of Ultra Scientist of Physical Sciences A, 29(2)(2017), 52-57.
[15] V.R.Kulli, General topological indices of tetrameric 1,3-adamantane, International Journal of Current Research in Science and Technology, 3(8)(2017), 26-33.
[16] V.R.Kulli, Computing topological indices of denrrimer nanostars, International Journal of Mathematics and its Applications, 5(3-B)(2017), 163-169.
[17] I.Gutman, V.R.Kulli, B.Chaluvaraju and H.S.Baregowda, On Banhatti and Zagreb indices, Journal of the International Mathematical Virtual Institute, 7(2017), 53-67.
[18] V.R.Kulli, Computation of some topological indices of certain networks, International Journal of Mathematical Archive, 8(2)(2017), 99-106.

[^0]: * E-mail: vrkulli@gmail.com

